Square 

Using measurements in feet: Area (ft^{2}) = 2 x Side LengthVolume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27 
Rectangle 

Using measurements in feet: Area (ft^{2}) = Length x WidthVolume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27 
Rectangle
Border 

Using measurements in feet: Inner Area (ft^{2}) = Length x WidthTotal Area (ft^{2}) = (Length + (2 x Border Width)) x (Width + (2 x Border Width))Area (ft^{2}) = Total Area – Inner AreaVolume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27 
Circle 

Using measurements in feet: Area (ft^{2}) = Pi x (Diameter/2)^2Volume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27Pi = 3.14 
Circle
Border 

Using measurements in feet: Outer Diameter = Inner Diameter + (2 x Border Width)Outer Area (ft^{2})
= Pi x (Outer Diameter/2)^2Inner Area (ft^{2})
= Pi x (Inner Diameter/2)^2Area (ft^{2}) = Outer Area – Inner AreaVolume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27Pi = 3.14Obviously, the Circle Border and Annulus are the same, just measured differently. 
Annulus 

Using measurements in feet: Outer Area (ft^{2})
= Pi x (Outer Diameter/2)^2Inner Area (ft^{2})
= Pi x (Inner Diameter/2)^2Area (ft^{2}) = Outer Area – Inner AreaVolume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27Pi = 3.14Obviously, the Circle Border and Annulus are the same, just measured differently. 
Triangle 

Using measurements in feet: Area (ft^{2}) = (1/4) x square root[ (a+b+c) x (b+ca) x (c+ab) x (a+bc) ]Volume (ft^{3}) = Depth x AreaVolume in Cubic Yards (yd^{3}) = Volume (ft^{3}) / 27 